GALOIS MODULES AND p-ADIC REPRESENTATIONS

نویسنده

  • A. AGBOOLA
چکیده

In this paper we develop a theory of class invariants associated to p-adic representations of absolute Galois groups of number fields. Our main tool for doing this involves a new way of describing certain Selmer groups attached to p-adic representations in terms of resolvends associated to torsors of finite group schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On arithmetic families of filtered phi-modules and crystalline representations

We consider stacks of filtered φ-modules over rigid analytic spaces and adic spaces. We show that these modules parametrize p-adic Galois representations of the absolute Galois group of a p-adic field with varying coefficients over an open substack containing all classical points. Further we study a period morphism (defined by Pappas and Rapoport) from a stack parametrising integral data and de...

متن کامل

Filtered Modules Corresponding to Potentially Semi-stable Representations

We classify the filtered modules with coefficients corresponding to two-dimensional potentially semi-stable p-adic representations of the Galois groups of p-adic fields under the assumptions that p is odd and the coefficients are large enough. Introduction Let p be an odd prime number, and let K be a p-adic field. The absolute Galois group of K is denoted by GK . By the fundamental theorem of C...

متن کامل

Cohomology and duality for (φ,Γ)-modules over the Robba ring

Given a p-adic representation of the Galois group of a local field, we show that its Galois cohomology can be computed using the associated étale (φ,Γ)-module over the Robba ring; this is a variant of a result of Herr. We then establish analogues, for not necessarily étale (φ,Γ)-modules over the Robba ring, of the Euler-Poincaré characteristic formula and Tate local duality for p-adic represent...

متن کامل

On families of phi , Gamma - modules

Berger and Colmez introduced a theory of families of overconvergent étale (φ,Γ)-modules associated to families of p-adic Galois representations over p-adic Banach algebras. However, in contrast with the classical theory of (φ,Γ)-modules, the functor they obtain is not an equivalence of categories. In this paper, we prove that when the base is an affinoid space, every family of (overconvergent) ...

متن کامل

CMI SUMMER SCHOOL NOTES ON p - ADIC HODGE THEORY ( PRELIMINARY VERSION )

Part I. First steps in p-adic Hodge theory 4 1. Motivation 4 1.1. Tate modules 4 1.2. Galois lattices and Galois deformations 6 1.3. Aims of p-adic Hodge theory 7 1.4. Exercises 9 2. Hodge–Tate representations 10 2.1. Basic properties of CK 11 2.2. Theorems of Tate–Sen and Faltings 12 2.3. Hodge–Tate decomposition 15 2.4. Formalism of Hodge–Tate representations 17 2.5. Exercises 24 3. Étale φ-m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004